Towards the identification of humic ligands associated with iron transport through a salinity gradient

0

  • Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tagliabue, A. et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions?. Glob. Biogeochem. Cycles 30, 149–174 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Riedel, T., Zak, D., Biester, H. & Dittmar, T. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc. Natl. Acad. Sci. U. S. A. 110, 10101–10105 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: A review. Front. Microbio. 3, 69 (2012).


    Google Scholar
     

  • Vraspir, J. M. & Butler, A. Chemistry of Marine Ligands and Siderophores. Annu. Rev. Mar. Sci. 1, 43–63. https://doi.org/10.1146/annurev.marine.010908.163712 (2009).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman, L., Cabanes, D. J. E., Blanco-Ameijeiras, S., Moisset, S. A. M. & Hassler, C. S. Iron biogeochemistry in aquatic systems: From source to bioavailability. Chimia 68, 764–771 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Whitby, H. et al. A call for refining the role of humic-like substances in the oceanic iron cycle. Sci. Rep. 10, 1–12 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Laglera, L. M. & van den Berg, C. M. G. Evidence for geochemical control of iron by humic substances in seawater. Limnol. Oceanogr. 54, 610–619 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Laglera, L. M. et al. First quantification of the controlling role of Humic substances in the transport of iron across the surface of the Arctic Ocean. Environ. Sci. Technol. 53, 13136–13145 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Whitby, H. et al. Contribution of electroactive humic substances to the iron-binding ligands released during microbial remineralization of sinking particles. Geophys. Res. Lett. 47, e2019GL086685 (2020).

  • Chen, X. et al. Role of terrestrial versus marine sources of humic dissolved organic matter on the behaviors of trace elements in seawater. Geochim. Cosmochim. Acta 333, 333–346 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Slagter, H. A. et al. Organic Fe speciation in the Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM. Mar. Chem. 197, 11–25 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Charette, M. A. et al. The transpolar drift as a source of riverine and shelf-derived trace elements to the Central Arctic ocean. J. Geophys. Res. Oceans 125, e2019JC015920 (2020).

  • Krachler, R., Jirsa, F. & Ayromlou, S. Factors influencing the dissolved iron input by river water to the open ocean. Biogeosciences 2, 311–315 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Krachler, R. et al. River-derived humic substances as iron chelators in seawater. Mar. Chem. 174, 85–93 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kritzberg, E. S., Villanueva, A. B., Jung, M. & Reader, H. E. Importance of boreal rivers in providing iron to marine waters. PLoS ONE 9, e107500 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Oldham, V. E., Miller, M. T., Jensen, L. T. & Luther, G. W. Revisiting Mn and Fe removal in humic rich estuaries. Geochim. Cosmochim. Acta 209, 267–283 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kritzberg, E. S. & Ekström, S. M. Increasing iron concentrations in surface waters – A factor behind brownification?. Biogeosciences 9, 1465–1478 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hansell, D. & Carlson, C. Biogeochemistry of Marine Dissolved Organic Matter (Elsevier, USA, 2002).


    Google Scholar
     

  • Herzog, S. D., Persson, P., Kvashnina, K. & Kritzberg, E. S. Organic iron complexes enhance iron transport capacity along estuarine salinity gradients of Baltic estuaries. Biogeosciences 17, 331–344 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Herzog, S. D., Gentile, L., Olsson, U., Persson, P. & Kritzberg, E. S. Characterization of Iron and Organic Carbon Colloids in Boreal Rivers and Their Fate at High Salinity. J. Geophys. Res. Biogeosciences 125, e2019JG005517 (2020).

  • Björnerås, C. et al. Widespread increases in iron concentration in European and North American freshwaters. Glob. Biogeochem. Cycles 31, 1488–1500 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Ekström, S. M. et al. Increasing concentrations of iron in surface waters as a consequence of reducing conditions in the catchment area. J. Geophys. Res. Biogeosciences 121, 479–493 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Sarkkola, S. et al. Iron concentrations are increasing in surface waters from forested headwater catchments in eastern Finland. Sci. Total Environ. 463–464, 683–689 (2013).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Škerlep, M. et al. Spruce forest afforestation leading to increased Fe mobilization from soils. Biogeochemistry 157, 273–290 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Knorr, K.-H. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – are DOC exports mediated by iron reduction/oxidation cycles?. Biogeosciences 10, 891–904 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Worrall, F., Burt, T. & Adamson, J. Can climate change explain increases in DOC flux from upland peat catchments?. Sci. Total Environ. 326, 95–112 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarkkola, S. et al. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Sci. Total Environ. 408, 92–101 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Evans, C. D., Monteith, D. T. & Cooper, D. M. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut. 137, 55–71 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T. & Cresser, M. S. Alternative explanations for rising dissolved organic carbon export from organic soils. Glob. Change Biol. 12, 2044–2053 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Hruška, J., Krám, P., McDowell, W. H. & Oulehle, F. Increased dissolved organic carbon (DOC) in Central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environ. Sci. Technol. 43, 4320–4326 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Haaland, S., Hongve, D., Laudon, H., Riise, G. & Vogt, R. D. Quantifying the drivers of the increasing colored organic matter in boreal surface waters. Environ. Sci. Technol. 44, 2975–2980 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • AR5 Climate Change 2013: The Physical Science Basis — IPCC. https://www.ipcc.ch/report/ar5/wg1/.

  • Austnes, K., Evans, C. D., Eliot-Laize, C., Naden, P. S. & Old, G. H. Effects of storm events on mobilisation and in-stream processing of dissolved organic matter (DOM) in a Welsh peatland catchment. Biogeochem. 99, 157–173 (2009).

    Article 

    Google Scholar
     

  • Clark, J. M., Lane, S. N., Chapman, P. J. & Adamson, J. K. Export of dissolved organic carbon from an upland peatland during storm events: Implications for flux estimates. J. Hydrol. 347, 438–447 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Nguyen, H.V.-M., Hur, J. & Shin, H.-S. Changes in spectroscopic and molecular weight characteristics of dissolved organic matter in a river during a storm event. Water Air Soil Pollut. 212, 395–406 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Reader, H. E., Stedmon, C. A. & Kritzberg, E. S. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments. Biogeosciences 11, 3409–3419 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Herzog, S. D., Conrad, S., Ingri, J., Persson, P. & Kritzberg, E. S. Spring flood induced shifts in Fe speciation and fate at increased salinity. Appl. Geochem. https://doi.org/10.1016/j.apgeochem.2019.104385 (2019).

    Article 

    Google Scholar
     

  • Minor, E. C., Swenson, M. M., Mattson, B. M. & Oyler, A. R. Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis. Environ. Sci. Process. Impacts 16, 2064–2079 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter(SPE-DOM) from seawater. Limnol. Oceanogr. 6, 230–235 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Abdulla, H. A. N., Minor, E. C., Dias, R. F. & Hatcher, P. G. Changes in the compound classes of dissolved organic matter along an estuarine transect: A study using FTIR and 13C NMR. Geochim. Cosmochim. Acta 74, 3815–3838 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Noda, I. Vibrational two-dimensional correlation spectroscopy (2DCOS ) study of proteins. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 187, 119–129 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noda, I. Determination of two-dimensional correlation spectra using the Hilbert transform. Appl. Spectroscopy 54, 994–998. https://doi.org/10.1366/0003702001950472 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Miller, M. E., McKinnon, L. P. & Walker, E. B. Quantitative measurement of metal chelation by fourier transform infrared spectroscopy. Anal. Chem. Res. 6, 32–35 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Rabajczyk, A. & Namieśnik, J. Speciation of Iron in the Aquatic Environment. Water Environ. Res. 86, 741–758 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karlsson, T. & Persson, P. Complexes with aquatic organic matter suppress hydrolysis and precipitation of Fe(III). Chem. Geol. 322–323, 19–27 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gibson, H. S., Worrall, F., Burt, T. P. & Adamson, J. K. DOC budgets of drained peat catchments: Implications for DOC production in peat soils. Hydrol. Process. 23, 1901–1911 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Worrall, F., Burt, T. P., Jaeban, R. Y., Warburton, J. & Shedden, R. Release of dissolved organic carbon from upland peat. Hydrol. Process. 16, 3487–3504 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Lepane, V., Depret, L., Väli, A. L. & Suursööt, K. Impact of seasonal climate change on optical and molecular properties of river water dissolved organic matter by HPLC-SEC and UV-vis spectroscopy. Chem. Biol. Technol. Agric. 2, 14 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Environment and Climate Change Canada. Environment and Climate Change Canada Real-time Hydrometric Data. Extracted from the Environment and Climate Change Canada Real-time Hydrometric Data web site. (https://wateroffice.ec.gc.ca/mainmenu/real_time_data_index_e.html). Accessed 01 April 2022.

  • Søndergaard, M., Stedmon, C. A. & Borch, N. H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability. Ophelia 57, 161–176 (2003).

    Article 

    Google Scholar
     

  • Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Cappellen, P. V. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lambert, J. B., Shurvell, H. F., Lightner, D. A. & Cooks, G. R. Organic Structural Spectroscopy (Prentice Hall, 1998).


    Google Scholar
     

  • Go to the source link

    Leave A Reply

    Your email address will not be published.